Bayesian disease mapping
hierarchical modeling in spatial epidemiology
Andrew B. Lawson
Kirjasarja: Chapman & Hall/CRC interdisciplinary statistics series

Tuote ei saatavilla
Bayesian disease mapping : hierarchical modeling i...
Lisää tuote omalle toivelistallesi ja saat halutessasi ilmoituksen sähköpostiisi, kun tuotetta tulee saataville Antikvaariin!
Haetaan tuotteita...
Teosta "Bayesian disease mapping" ei välttämättä ole tällä hetkellä saatavilla Antikvaarista tai teoslistamme on vielä puutteellinen. Katsothan samankaltaiset tuotteet sekä alempaa löytyvät tuote-ehdotuksemme teokseen liittyen. Voit myös lisätä tämän teoksen toivelistallesi ja saat halutessasi ilmoituksen sähköpostiisi, kun tuotteita tulee saataville.
Samankaltaiset tuotteet
Haetaan...
Tiedot
Kustantaja/julkaisija
CRC Press, Taylor & Francis Group
Sidosasu
ISBN
1466504811
9781466504813
Tuoteryhmät
Ei tiedossa
Kieli
englanti
Alkuperäinen nimi
-
Esittely
s:1724:"Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. A biostatistics professor and WHO advisor, the author illustrates the use of Bayesian hierarchical modeling in the geographical analysis of disease through a range of real-world datasets. New to the Second Edition Three new chapters on regression and ecological analysis, putative hazard modeling, and disease map surveillance Expanded material on case event modeling and spatiotemporal analysis New and updated examples Two new appendices featuring examples of integrated nested Laplace approximation (INLA) and conditional autoregressive (CAR) models In addition to these new topics, the book covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. WinBUGS and R are used throughout for data manipulation and simulation.";